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Abstract

The unsteady compressible boundary layer equations over an impulsively started flat plate are firstly solved sub-

jected to velocity slip and temperature jump conditions. Comparisons are carried out with existing solutions. Then the

conjugate problem for a slab of finite thickness is dealt, when the fluid dynamic field is coupled with the thermal field in

the solid. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In this paper the problem of an infinite flat plate

which is impulsively started in a compressible gas is

firstly revisited. The unsteady laminar boundary layer

equations are assumed as the governing physico-math-

ematical model subjected to slip flow and temperature

jump conditions at the wall. To the authors’ knowledge

this problem was already presented by Patterson in his

book [1] on molecular gas dynamics, but there the

question was carried out in an oversimplified way in

order to obtain an analytical solution. In particular the

dissipation function was neglected in the energy equa-

tion so that the results lead to unrealistic conclusions

although the analysis can be considered as a first ap-

proach to a complex situation. The present work was

motivated by the increasing attention which is paid to

more physically acceptable boundary conditions than

the no-slip at the wall when dealing with recent appli-

cations of the continuum gas model. Navier [2] in his

celebrated paper already presented a velocity slip con-

dition for the motion of a viscous fluid over a body

surface. The developments of his idea led to a series of

proposals on the same subject which can be mostly

found in [3,4], where they are extensively discussed. As it

is easily understandable rigorous advances in this field

took place following the progress of the molecular ki-

netics in describing the gas–surface interactions, one

model of which can be expressed by the velocity slip and

temperature jump relations that will be adopted here [5].

To cite a few cases, more accurate conditions than the

usual vanishing of the velocity at the wall are to be

imposed in the fluid dynamics of microelectronics and

mechanical devices, apart from the possible flight situ-

ations of spacecraft, and in all those cases where the

continuum Navier–Stokes model must be tempered at

the boundaries to take into account the first rarefaction

effects. See for example, in this respect, recent papers as

those by Beskok [6] and Aoki [7]. The impulsively star-

ted plate in a continuum fluid has been extensively

studied in the past and the main interest for the problem

stays in its simple mathematical representation of a basic

physical situation in applied sciences. In this regard the

problem may be associated to the Poiseuille and Couette

flows for the importance of its results. In particular,

when the plate is suddenly put in motion in an incom-

pressible fluid, the problem reduces to an ordinary

differential equation after use is made of a similar

transformation of the variables, as in the case of the

other two cited parallel flows. Analytical solutions for

the continuum fluid are thus available in the incom-

pressible case but they can also be found in the com-

pressible one provided that suitable hypotheses are made

for the flow and fluid characteristics. When the bound-

ary layer approximation is assumed and a realistic
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description of a gas of colliding molecules is taken into

account, then a critical approach appears necessary to

the validity of the solutions which are obtained in the

continuum regime. In a rather old paper, Yang and Lees

[8] first addressed their attention to the question of es-

tablishing which physico-mathematical model should be

considered for the problem of the abruptly started and

infinitely thin plate since a macroscopic characteristic

length is not present and the only length which is

physically meaningful is the microscopic gas mean free

path. Those authors began considering the Boltzmann

equation and obtained an analytic solution which is

valid only for the very first instants after the plate starts,

when the flow regime corresponds to that of the free

molecules.

To fill somehow the gap between rarefied regimes and

continuum flow, Patterson presented a solution for a

simplified slip flow model. That solution was obtained

via a similarity variable transformation of the boundary

layer equations by neglecting – as we said – the dissi-

pation function in the energy equation. It will be shown

that Patterson’s evaluation of the temperature field leads

to an unphysical solution which becomes less and less

accurate as the Mach number (or the Reynolds number)

increases. On the other hand the solution to the com-

pressible continuum boundary layer equations with no

velocity slip and no temperature jump, although taking

into account the viscous dissipation, presents the

unphysical characteristics of the divergence of both the

shear stress and the heat transfer at the wall at the initial

time. In the following section the equations which gov-

ern the unsteady boundary layer for a compressible gas

will be given the form for an incompressible fluid by

means of the Stewartson–Dorodnitsyn transformation.

A similar variable will then be adopted which

changes the energy equation into an ordinary differential

equation where the time variable is still present as a

parameter. For comparison either the case of no-slip,

no-temperature jump and the case of slip and jump but

no viscous dissipation will be solved for an isothermal

plate and an adiabatic plate which are initially at the

same temperature with the ambient. The plate with an

adiabatic surface will subsequently deserve more par-

ticular comments and will be further discussed in Section

3. In the latter situation the problem will be solved for a

slab of finite thickness in order to show effects of the

temperature jump which would otherwise be zero for a

vanishing thickness.

2. Analysis

The unsteady boundary layer equations for the par-

allel flow of a compressible gas over a flat plate y ¼ 0 are

oq
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þ oðqvÞ
oy

¼ 0; ð1Þ

q
ou
ot

�
þ v

ou
oy

�
¼ 1

Re
oðlou=oyÞ
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�
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l
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Nomenclature

b slab thickness

l mean free path

L reference length

Ma Mach number

Pr Prandtl number

Re Reynolds number

t dimensionless time for the gas phase

t� dimensionless time for the solid phase

T dimensionless temperature for the gas phase

u dimensionless velocity component in x

direction

U Stewartson–Dorodnitzyn velocity component

in x direction

U0 wall velocity

v dimensionless velocity component in y

direction

V Stewartson–Dorodnitzyn velocity component

in v direction

x dimensionless abscissa in the gas phase

y dimensionless ordinate in the gas phase

y� dimensionless ordinate in the solid

phase

Y Stewartson–Dorodnitzyn abscissa

Greek symbols

a thermal diffusivity of the slab

c ratio of specific heats

h dimensionless temperature in the slab

k thermal conductivity of the gas

l absolute viscosity of the gas

P coupling parameter

q density

Subscripts

s quantities evaluated in the solid

t time derivative

w quantities evaluated at the wall

y derivative with respect to y

1 quantities evaluated at infinity
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where the density q and the temperature T are made

dimensionless with respect to the values at infinity q1
and T1, and the x- and y-components of the velocity u

and v, respectively, are made dimensionless with respect

to the wall velocity U0. Moreover the viscosity l and

the heat conductivity k are dimensionless with respect

to l1 and k1. The length L and the time L=U0 are

assumed as references. On the right-hand side of (3)

both the thermal conduction and the viscous dissipa-

tion are taken into account. Finally c is the ratio of the

specific heats, Re is the Reynolds number, Ma is the

Mach number and Pr is the Prandtl number, all cal-

culated in reference conditions. At the initial and at the

boundaries

uðy; t�Þ ¼ vðy; t�Þ ¼ 0; ½06 y61	; ð4Þ

uðy ¼ 0; tþÞ ¼ 1� n1 Knou=oy½ 	y¼0;

uðy ! 1; tþÞ ¼ 0; vðy ¼ 0; tþÞ ¼ 0; ð5Þ

where we put t� for t < 0 and tþ for t > 0.

For an isothermal plate at an arbitrary assigned wall

temperature Tw. Let

T ðy; t�Þ ¼ 1; ½06 y61	; ð6Þ

T ðy ¼ 0; tþÞ ¼ Tw þ n2½KnoT=oy	y¼0;

T ðy ! 1; tþÞ ¼ 1: ð7Þ

In the expressions above Kn is the Knudsen number

l=L, where l is the mean free path, and n1, n2 are co-

efficients which depend on the physical characteristics

of the molecules and are usually close to unity [5]. In

the following, for the sake of simplicity, we will assume

n1 and n2 equal to one, although this assumption is not

strictly necessary. Moreover all the solutions presented

here correspond to a value of Pr equal to one. This

assumption, although not necessary, will be made to

carry out the comparison with the existing similar so-

lutions.

As is very often done we apply the Stewartson–Do-

rodnitzsyn transformation [9]

Y ¼
Z y

0

qdy0; U ¼ u; V ¼ qvþ oY
ot

ð8Þ

to the set of Eqs. (1)–(3) and pertinent conditions (4)–(7)

and assume that l and k are linear functions of T so that

l=ðl1T Þ ¼ r ¼ const:, with r ¼ T 1=2
w ð1þ dÞ=ðTw þ dÞ

and d ¼ 1:09924 [10]. This approach provides an in-

compressible-like form of the basic equations and in

particular one has

oU
ot

¼ r
Re

o2U
oY 2

; ð9Þ
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� r
RePr

o2T
oY 2

¼ ðc � 1ÞMa2

Re
oU
oY

� �2

: ð10Þ

In the following we will take for the reference length

L ¼ l jy¼0. Therefore Kn jy¼0¼ 1 and Ma ¼ C Re, where
C depends upon the gas properties.

The solution to (9) is already well known [1]

U ¼ erf ðY =2Þ
ffiffiffiffiffiffi
Re
rt

r" #
þ exp Y

�
þ rt
Re

	


 erfc ðY =2Þ
ffiffiffiffiffiffi
Re
rt

r"
þ

ffiffiffiffiffiffi
rt
Re

r #
ð11Þ

and from it the dissipation term can be calculated. At

this point if one introduces the new variable g ¼ Y =ð2tÞ
the energy equation becomes

o2T
og2

þ 4tgðRePrÞ=r½ 	 oT
og

¼ � 4Prt2ðc



� 1ÞMa2=r
� oU

oY

� �2

; ð12Þ

where now T ðg; tÞ and

oU
oY
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¼ exp 2t 2g
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þ rt
Re

	i
erfc2

ðtÞ1=2ðg þ r=ReÞffiffiffiffiffiffiffiffiffiffiffi
r=Re

p
" #

:

ð13Þ

The expression (12) above is an ordinary differential

equation wherein T appears as a parameter. The con-

ditions on T ðg; tÞ are T ðg ¼ 0; tþÞ ¼ Tw þ ð2tÞ�1Tg jg¼0,

and T ðg ! 1; tþÞ ¼ 1. The solution can then be for-

mally expressed as

T ðg; tÞ

¼ c2 þ c1

Z
exp

�
� 2RePr

r
g2t

�
dg � 4ðc � 1ÞMa2

Re
t2



Z

exp

�
� 2RePr

r
g2t

�
F ðg; tÞdg;

where

F ðg; tÞ ¼
Z g

0

exp ðð2RePrÞ=rÞg02 t
h i

U 2
Y ðg0; tÞdg0

and c1 and c2 are the integration constants. Note that

c1 ¼ Tgðg ¼ 0; tÞ corresponds to the heat flux at the wall

in the transformed variables and c2 ¼ T ðg ¼ 0; tÞ to the

wall temperature.

All the solutions which will be soon presented here

were calculated numerically and the integration was

carried out with an accuracy better than 10�6 on T ðgÞ.
Figs. 1 and 2 give the temperature profiles at various

times for two values of the Mach number and for

Tw ¼ 1.

The comparisons which are presented clearly show

the noticeable effect of the boundary conditions. Since

the velocity slip at the wall corresponds to lower values

of the viscous dissipation at a given time with respect to

the no-slip condition, this in turn corresponds to lower
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wall temperature values. In addition the temperature

jump eliminates the fast initial temperature rise. As

t ! 1 the differences at the wall induced by the

boundary conditions disappear. Table 1 gives a few

comparisons of the heat flux at the wall as calculated

according to different boundary conditions.

Figs. 3 and 4 are relative to comparisons between the

present results and those calculated after neglecting the

viscous dissipation. Note that these comparisons can be

carried out only for Tw 6¼ 1, since there is no evolution of

the thermal field for Tw ¼ 1 following Patterson’s as-

sumption. However for low and moderate values of Ma

the two sets of solutions are very close at least for small

t. Fig. 4 shows instead the great influence of the viscous

dissipation at high values of Ma. Table 1 reports the

temperature gradient at the wall which is proportional

Table 1

Temperature jump and temperature gradient at the wall vs. time

t ½T jY¼0 �1	 
 103 ðoT=oY Þ jY¼0 
103 ðoT=oY Þ jY¼0

0.001 0.04 0.02 1.28

0.01 0.31 0.17 0.41

0.1 1.76 0.97 0.13

1 4.66 2.51 0.04

10 4.17 2.31 0.01

100 1.91 1.06 0.00

Last column refers to the no-slip, no-temperature jump conditions. c ¼ 1:4, Pr ¼ 1, Tw ¼ 1:1, Ma ¼ 0:6.

Fig. 3. Temperature distribution vs. Y at different times.

c ¼ 1:4, Tw ¼ 1:1, Ma ¼ 0:6. (1) t ¼ 0:1, (2) t ¼ 1, (3) t ¼ 10.

(––) Present solution, (– –) [1].

Fig. 4. Temperature distribution vs. Y at different times.

c ¼ 1:4, Tw ¼ 1:1, Ma ¼ 3. (1) t ¼ 0:1, (2) t ¼ 1. (––) Present

solution, (– –) [1].

Fig. 2. Temperature distribution vs. Y at different times.

c ¼ 1:4, Tw ¼ 1, Ma ¼ 3. (1) t ¼ 0:1, (2) t ¼ 1, (3) t ¼ 10. (––)

Present solution, (– –) no-slip no-jump.

Fig. 1. Temperature distribution vs. Y at different times.

c ¼ 1:4, Tw ¼ 1, Ma ¼ 0:6. (1) t ¼ 0:1, (2) t ¼ 1, (3) t ¼ 10. (––)

Present solution, (– –) no-slip no-jump.
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to the local heat flux. In this respect we recall that the

heat flux diverges as t ! 0 when there is no velocity slip.

At the conclusion of this section we note that if we

assign an adiabatic condition at the wall and neglect the

dissipation function then, for an initial wall temperature

equal to the temperature of the fluid at rest, the tem-

perature jump at the wall is zero at all times. Therefore

no temperature change would ever occur even after the

plate starts moving. On the contrary, if the dissipation

function is taken into account the resulting temperature

distribution in the field can be evaluated following a

procedure close to the one for the isothermal plate. In

particular, Fig. 5 shows a comparison between the pre-

sent solution and the one obtained for no-slip and no-

jump at the wall. The temperature profile recovers the

adiabatic wall temperature at the body surface and tends

to the solution for no-jump as t ! 1.

In order to compare our solution with the one for

vanishing viscous dissipation in a physical situation, the

following section will deal with the case of a slab of a

finite thickness which is suddenly started while keeping

adiabatic that surface which is not in contact with the

gas. The solution for the infinitely thin plate is then a

particular case of this more general theory. On the other

hand this extension of the Rayleigh problem is coupled

with the evaluation of the temperature evolution in the

solid. Apart from reducing to the case where the thick-

ness of the slab goes to zero, the solution provides a

means for evaluating the thermal field when the surface

temperature of the flat plate is a function of the time.

3. The conjugate case

For a slab of finite thickness b which is assumed as a

reference length the energy equation is

oh
ot�

¼ o2h
oy�2

; ð14Þ

where the time t� and the distance y� have been made

dimensionless with respect to b2=a and b, respectively,

and a is the heat diffusivity. The temperature hðy�; t�Þ in
(14) is dimensionless with respect to T1. The gas–solid

interface is represented by y� ¼ 0 and y� points posi-

tively into the gas. At y� ¼ �1 we impose either the

isothermal condition hð�1; t�Þ ¼ he (Case A) or the

adiabaticity ðoh=oy�Þð�1; t�Þ ¼ 0 (Case B) whereas

the initial condition is always hðy�; 0Þ ¼ const: A new set

of variables has been assumed with respect to (1)–(3) to

provide meaningful expressions to the dimensionless

quantities in each region of the entire gaseous and solid

domain. At the interface a further condition must be

satisfied which represents a constraint between the two

phases. We recall that the heat flux at y� ¼ 0 must be

continuous

he

ohð0; t�Þ
oy�

¼ P1

oT
oy

; ð15Þ

whereas (7) and (1) can now be written in the form

hð0; t�Þ ¼ Tw þ oT
oy

����
y¼0

: ð16Þ

In (15) a first coupling parameter appears, namely the

characteristic product P1 ¼ ðkbÞ=ðkslÞ where ks is the

heat conductivity of the solid. At this point the formu-

lation of the coupled differential problem is represented

by the set of Eqs. (9)–(14) with the pertinent initial and

boundary conditions.

The exact solution to the thermal field in the slab can

be found in both Case (A) and Case (B) in books such as

[11] as an infinite series, where the unknown temperature

at the interface hw appears. However, since our interest

is mainly in the fluid dynamic aspects of the problem, we

recall that in [12] it was shown that excellent approxi-

mations to the exact solutions for the solid can be given

which greatly simplify the analytic solutions of the fluid

dynamic problem without too a cumbersome algebra. In

particular, near the interface for small y�, we write for

the temperature distribution in the solid phase the

equation

ohð0; t�Þ
ot�

¼ 3
ohð0; t�Þ

oy�

�
� hð0; t�Þ � he

�
; ð17Þ

when hð�1; t�Þ ¼ he and

3
ohð0; t�Þ

ot�
� o2hð0; t�Þ

oh�ot�
¼ 3

ohð0; t�Þ
oy�

; ð18Þ

when ohð�1; t�Þ=oy� ¼ 0. Comparisons with the exact

solutions show that these approximate expressions give

negligible errors.When (17),(18) are associated to (15),

(16), they provide the evolution of the gas temperature

at the interface

Fig. 5. Temperature distribution vs. Y at different times.

c ¼ 1:4, ðoT=oyÞ jw¼ 0, Ma ¼ 3. (1) t ¼ 1, (2) t ¼ 10, (3)

t ¼ 100. (––) Present solution, (– –) no-slip no-jump.
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oT ð0; tÞ
ot

¼ o2T ð0; tÞ
oyot

þ 3P2 ðP1

�
þ 1Þ oT ð0; tÞ

oy

� T ð0; tÞ þ he

�
ð19Þ

for an isothermal external wall, and

3

P1

oT ð0; tÞ
ot

¼ ð1þ 3

P1

Þ o
2T ð0; tÞ
oyot

� P2

o3T ð0; tÞ
oy2ot

þ 3P2

oT ð0; tÞ
oy

ð20Þ

for the adiabatic case, where the second coupling pa-

rameter P2 is the ratio of two characteristics quantities

one of the fluid l=U0 and one of the solid phase b2=a.
The rate of increase of the wall temperature on the

fluid side is directly proportional to the temperature

difference he � Tw through P2, and to the heat exchange

through the product P1 � P2.

When Case (A) is considered, the asymptotic steady

condition does not depend upon P2 but only upon P1.

This last number is representative of the relative speed of

the heat conduction process in the two phases. In Case

(B) the asymptotic steady solution does not depend

anymore upon both P1 and P2.

After (19) and (20) are expressed in the g; T variables

they represent the coupling conditions for (12) in Case

(A) and Case (B), respectively. Figs. 6 and 7 give the

comparisons between the temperature distributions as

calculated with and without velocity slip and tempera-

ture jump at the interface.

Fig. 6 is relative to the case he ¼ 1 and when observed

together with Fig. 2 gives a clear picture of the influence

of the boundary conditions and of the slab thickness on

the thermal field in the gas. We note that in all cases the

temperature at the interface is lower at the initial times

for the no-slip, no-jump conditions and then increases

well above the present solutions. The thickness of the

slab, on the other hand, induces higher temperature

values than in the case of the thin flat plate. Fig. 7 is

relative to ðoh=oy�Þ jy�¼�1¼ 0 and should be observed

together with Fig. 5. The difference in the solutions

which are induced by the different boundary conditions

are smoothed at the initial times by the slab thickness.

When the thickness vanishes, the temperature at the

interface goes always to the adiabatic wall value as

t ! 0, when the temperature jump is zero. In all cases

T ðY ¼ 0Þ tends to the adiabatic wall temperature as

t ! 1.

4. Conclusions

The Rayleigh problem of the impulsively started flat

plate has been revisited as a test situation to show the

influence of the velocity slip and temperature jump at

the wall. Comparisons are presented of the obtained

solutions with other approximate ones which present

unphysical singularities. The coupled problem of the

thermal fields in the compressible gas and in a slab is

solved at the end of the paper to show the influence of

the finite thickness.
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